Законы Кеплера и Ньютона

 

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге, Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона:

 

1.        Планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце находится в одной из двух фокальных точек эллипса.

2.        Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени.

3.        Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

 

Первый закон описывает геометрию траекторий планетарных орбит. Эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе.

 

Что такое эллипс

 

Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии[1] (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса.

 

Параметры эллипса на русском и английском языках

 

Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Как выяснилось впоследствии, третий закон Кеплера вытекает из закона всемирного тяготения Ньютона.

 

Открытие закона тяготения. Законы Кеплера лишь описали, как движутся планеты, но каким образом осуществляется это движение, было неизвестно. Сегодня все знают, что движение планет по орбитам определяется равнодействующей двух сил: с одной стороны, силы притяжения планеты к Солнцу, с другой стороны  - силы инерции движения планеты. Но в те времена к этим очевидным выводам приходилось идти буквально наощупь.

Первый эскиз решения дал Роберт Гук (1635—1703) -— первооткрыватель известного закона, связывающего силы упругости с деформациями. В 1674 г. он опубликовал большой мемуар «Попытка доказательства годичного движения на основе наблюдений». В нем он писал: «Я изложу систему мира, во многих частностях отличающуюся от всех до сих пор известных систем, но во всех отношениях согласную с обычными механическими законами. Она связана с тремя предположениями. Во-первых, все небесные тела производят притяжение к их центрам, притягивая не только свой части, как мы это наблюдали на Земле, но и другие небесные тела, находящиеся в сфере их действия. Таким образом, не только Солнце и Луна оказывают влияние на форму и движение Земли и Земля на Луну и Солнце, но также Меркурий, Венера, Марс, Юпитер и Сатурн влияют на движение Земли; в свою очередь притяжение Земли действует на движение каждой планеты. Второе предположение состоит в том, что всякое тело, получившее однажды простое прямолинейное движение, продолжает двигаться по прямой до тех пор, дока не отклонится в своем движении другой действующей силой и не будет вынуждено описывать круг, эллипс или иную сложную линию. Третье предположение заключается в том, что притягивающие силы дейст­вуют тем больше, чем ближе тело, на которое они действуют, к центру притяжения. Что касается степени этой силы, то я не мог еще, определить ее на опыте; но во всяком случае, как только эта степень станет известной, она чрезвычайно облегчит астрономам задачу нахождения закона небесных движений, без нее же это невозможно... Я хотел бы указать это тем, у которых есть время и достаточная сноровка для продолжения исследования и хватит прилежания для выполнения наблюдений и расчетов».

Следует подчеркнуть важность принципа независимости действия сил и независимости движений для объяснения механизма вращательного движения планет. Согласно Гуку, Ньютону и другим вращательное движение является сложным: оно состоит из инерциального движения по касательной и ускоренного движения (падения) к притягивающему центру. Движения эти независимы. Всякое элементарное перемещение планеты по траектории является геометрической суммой элементарных перемещений по касательной и по радиусу. Таким образом, кажущееся непрерывным движение является суммой дискретных движений.

Мысль, что тела падают на землю вследствие притяжения их земным шаром, была далеко не нова: это знали еще древние, например Платон. Но как измерить силу этого притяжения? Везде ли на земном шаре оно одинаково и как далеко оно простирается? Вот вопросы, которые до Ньютона — автора закона всемирного тяготения, смущали ученых и философов.

 Кеплер был на расстоянии одного шага от открытия Ньютона и все-таки не сделал его. Мало того, что Кеплер приписывал движения планет некоторому взаимному притяжению, он даже готов был принять закон «квадратной пропорции» (то есть действия, обратно пропорционального квадратам расстояний). Увы, вскоре он отказался от него и вместо этого предположил, что притяжение обратно пропорционально не квадратам расстояний, а самим расстояниям. Кеплеру не удалось установить механических начал им же открытых законов планетного движения.

 Непосредственными предшественниками Ньютона в этой области были его соотечественники Джильберт и в особенности Гук. В 1660 году Джильберт издал книгу «О магните», в которой сравнивал действие Земли на Луну с действием магнита на железо. В другом сочинении Джильберта, напечатанном уже после его смерти, сказано, что Земля и Луна влияют друг на друга как два магнита, и притом пропорционально своим массам. Но ближе всего к истине подошел Роберт Гук, современник и соперник Ньютона. 21 марта 1666 года, то есть незадолго до того времени, когда Ньютон впервые глубоко вник в тайны небесной механики, Гук прочел на заседании Лондонского королевского общества отчет о своих опытах над изменением силы тяжести в зависимости от расстояния падающего тела относительно центра Земли. Сознавая неудовлетворительность своих первых опытов, Гук придумал измерять силу тяжести посредством качания маятника — мысль в высшей степени остроумная и плодотворная. Два месяца спустя Гук сообщил в том же обществе, что сила, удерживающая планеты в их орбитах, должна быть подобна той, которая производит круговое движение маятника. Значительно позднее, когда Ньютон уже готовил к печати свой великий труд, Гук независимо от Ньютона пришел к мысли, что «сила, управляющая движением планет», должна изменяться в «некоторой зависимости от расстояний», и заявил, что «построит целую систему мироздания», основанную на этом начале. Но здесь-то и обнаружилось различие между талантом и гением. Счастливые мысли Гука так и остались в зачаточном состоянии. Ему не хватило сил справиться со своими гипотезами, и приоритет открытия принадлежит Ньютону.

Существует легенда, что Ньютон открыл свой закон всемирного тяготения, увидев, как на землю падает яблоко. Но яблоки падали на Землю и в течение многих веков и тысячелетий до Ньютона. Однако падение яблока смогло привести к открытию только тогда, когда к этому открытию вплотную подошло развитие науки.

Ньютон давно размышлял о законах падения тел, и весьма возможно, что, в частности, падение яблока опять навело его на эти мысли, от которых он перешел к вопросу: везде ли на земном шаре падение тел происходит одинаково? Так, например, можно ли утверждать, что в высоких горах тела падают с такою же скоростью, как и в глубоких шахтах?

Но каким образом открыл Ньютон этот закон, для которого аналогия с падением яблока уже не могла иметь никакого значения? Сам Ньютон писал много лет спустя, что математическую формулу, выражающую закон всемирного тяготения, он вывел из изучения знаменитых законов Кеплера. Возможно, однако, что его работу в этом направлении значительно ускорили исследования, производившиеся им в области оптики Закон, которым определяется «сила света» или «степень освещения» данной поверхности, весьма схож с математической формулой тяготения. Простые геометрические соображения и прямой опыт показывают, что при удалении, например, листа бумаги от свечи на двойное расстояние степень освещения поверхности бумаги уменьшается, и притом не вдвое, а в четыре раза, при тройном расстоянии — в девять раз и так далее. Это и есть закон, который во времена Ньютона называли кратко законом «квадратной пропорции». Если, говорить точнее, «сила света обратно пропорциональна квадратам расстояний». Весьма естественно для такого ума, как Ньютон, было попытаться приложить этот закон к теории тяготения.

 Гук, полемизируя с Ньютоном, исправил одну из его ошибок. Ньютон полагал, что падающее тело, вследствие соединения его движения с движением Земли, опишет винтообразную линию. Гук показал, что винтообразная линия получается лишь в том случае, если принять во внимание сопротивление воздуха и что в пустоте движение должно быть эллиптическим. Проверив выводы Гука, Ньютон убедился, что тело, брошенное с достаточной скоростью, находясь в то же время под влиянием силы земного тяготения, действительно может описать эллиптический путь. Размышляя над этим предметом, Ньютон открыл знаменитую теорему, по которой тело, находящееся под влиянием притягивающей силы, подобной силе земного тяготения, всегда описывает какое-либо коническое сечение, то есть одну из кривых, получаемых при пересечении конуса плоскостью (эллипс, гипербола, парабола и в частных случаях круг и прямая линия). Кроме того, Ньютон определил, что центр притяжения, то есть точка, в которой сосредоточено действие всех притягивающих сил, действующих на движущуюся точку, находится в фокусе описываемой кривой. Так, центр Солнца находится (приблизительно) в общем фокусе эллипсов, описываемых планетами.

 Достигнув таких результатов. Ньютон сразу увидел, что он вывел теоретически один из законов Кеплера, гласящий, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца.

 Изучение законов эллиптического движения значительно подвинуло вперед исследования Ньютона. Но до тех пор, пока вычисления не согласовались с наблюдением, Ньютон должен был подозревать существование некоторого все еще от него ускользавшего источника ошибки или неполноты теории.

 Лишь в 1682 году Ньютон смог использовать более точные данные при измерении меридиана, полученные французским ученым Пикаром. Зная длину меридиана, Ньютон вычислил диаметр земного шара и немедленно ввел новые данные в свои прежние вычисления. К величайшей радости своей ученый убедился, что его давнишние взгляды совершенно подтвердились. Сила, заставляющая тела падать на Землю, оказалась совершенно равной той, которая управляет движением Луны.

 Этот вывод был для Ньютона высочайшим торжеством его научного гения. Теперь вполне оправдались его слова: «Гений есть терпение мысли, сосредоточенной в известном направлении». Все его глубокие гипотезы, многолетние вычисления оказались верными. Теперь он вполне и окончательно убедился в возможности создать целую систему мироздания, основанную на одном простом и великом начале. Все сложнейшие движения Луны, планет и даже скитающихся по небу комет стали для него вполне ясными. Явилась возможность научного предсказания движений всех тел Солнечной системы, а быть может, и самого Солнца, и даже звезд и звездных систем.

 В конце 1683 года Ньютон, наконец, сообщил Королевскому обществу основные начала своей системы в виде ряда теорем о движении планет.

Все, казалось, предугадано, однако сформулировать закон никто не мог, поставленная задача оставалась не решенной. Не хватало понятия массы и математически выраженных законов динамики, которые дали бы возможность решить задачу определения траектории движения тела, на которое действует сила, убывающая обратно пропорционально квадрату расстояния.

Сегодня формула закона всемирного тяготения определяется формулой:

 

F = GM1M2/R2,

 

Где F – сила гравитационного притяжения между двумя телами, M1 и M2 – массы этих двух тел,  R – расстояние между ними, а величина G – это всегда постоянная величина (константа), которую называют гравитационная постоянная.  В системе единиц СИ (т.е. при измерении массы в килограммах, а расстояния в метрах) это число равно G=6,67∙10-11. При этом единица измерения силы F называется ньютон в честь Исаака Ньютона. Эта сила определяется таким образом. Из второго закона механики (также открытого Ньютоном, поэтому его часто называют «второй закон Ньютона») следует, что между силой F, действующей на тело массой m, и вызываемым этой силой ускорением a действует следующее соотношение:

 

F = ma

 

Т.е. сила в 1 ньютон – это сила, которая при действии на тело массой 1 кг вызывает его ускорение на 1 м/с2 (т.е. под действием этой силы скорость тела в течение одной секунды изменится на 1 метр в секунду). Из этой формулы можно найти ускорение, вызываемое силой:

 

a = F/m

 

Ускорение, вызываемое силой тяжести, называют ускорением свободного падения и обозначают буквой g. Если масса Земли равна M, расстояние от центра Земли до земной поверхности – R, а масса тела – m, то получаем, что ускорение свободного падения у поверхности Земли равно:

 

g = F/m = GMm/mR2

 

Масса тела m в числителе и в знаменателе сокращается, и получаем:

 

g = F/m = GM/R2

 

Получается, что ускорение свободного падения на поверхности планеты зависит только от массы и размера планеты, но не зависит от массы тела, т.е. одинаково для всех тел. На поверхности Земли ускорение свободного падения равно примерно 10 м/с2, или, точнее, 9,81 м/с2 (конкретные цифры в разных географических точках могут немного отличаться из-за рельефа местности и неоднородностей в распределении масс внутри земли). То есть из законов Ньютона мы вывели результат, ранее экспериментально открытый Галилеем – что все тела падают на Землю с одинаковым ускорением вне зависимости от их массы.

Аналогичным образом (путём несколько более сложных вычислений) в 1684 г. английский астроном Эдмунд Галлей (1656 — 1742) показал, что из третьего закона Кеплера должно следовать, что сила тяготения убывает обратно пропорционально квадрату расстояния.

В конце 1684 г. Галлей обратился к Ньютону с просьбой решить задачу и только теперь узнал, что она решена. Он стал убеждать Ньютона опубликовать свои результаты. Вскоре Ньютон прислал в Королевское общество трактат под заглавием «Предположения о движении». Это был эскиз будущих «Математических начал натуральной философии». Ньютон показал, что, опираясь на три закона динамики, закон независимости действия сил и закон всемирного тяготения, можно точно решить любую задачу небесной механики на определение положений и скоростей космических тел, определения траекторий их движения.

Открытие Ньютона было принято не сразу. Гук уверял членов Королевского общества, что все идеи, содержавшиеся в «Началах», уже сто раз предлагались им; те же, что не излагались им ранее, — ошибочны. Гюйгенс полностью и категорически отверг идею взаимного тяготения частиц, допуская наличие тяготения лишь внутри тел. Лейбниц продолжал настаивать на том, что движение планет может быть объяснено только посредством некоторой эфирной вихрящейся жидкости, сбивающей планеты с прямолинейного пути Бернулли и Кассини тоже упорно твердили о вихрях.

 Однако потихоньку шум утих, а слава открытия всемирного тяготения досталась по праву Исааку Ньютону.

 

Вопросы:

 

1.      В чём заключаются законы Кеплера?

2.      Что такое эллипс? Чем он отличается от окружности?

3.      Что такое апогелий и перигелий?

4.      Что такое эксцентриситет?

5.      По какой формуле определяется сила тяжести?

6.      Что такое ускорение свободного падения?

7.      Почему тела разной массы падают на Землю одновременно?

8.      Масса Луны  в 81 раз меньше массы Земли, а радиус Луны в 3,7 раза меньше радиуса Земли. Во сколько раз ускорение свободного падения на поверхности Луны будет отличаться от ускорения свободного падения на Земле?

 



[1] В словах «апогелий» и «перигелий» корень «гелий» (Солнце) означает, что речь идёт именно о вращении планет вокруг Солнца. При движении по орбитам вокруг других небесных тел приставки апо- и пери- могут использоваться с другими корнями, обозначающими самую высокую и самую низкую точки орбиты (например, апогей и перигей – для околоземной орбиты, апоселений и периселений – для спутника, вращающегося вокруг Луны и т.п. Часто в астрономической литературе используется обобщающее название «афелий», обозначающее самую высокую точку орбиты в общем случае.